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Abstract

In this paper we study the smooth convex-concave saddle point problem. Specifically, we analyze
the last iterate convergence properties of the Extragradient (EG) algorithm. It is well known that
the ergodic (averaged) iterates of EG converge at a rate of O(1/T ) (Nemirovski (2004)). In this
paper, we show that the last iterate of EG converges at a rate of O(1/

√
T ). To the best of our

knowledge, this is the first paper to provide a convergence rate guarantee for the last iterate of EG
for the smooth convex-concave saddle point problem. Moreover, we show that this rate is tight
by proving a lower bound of Ω(1/

√
T ) for the last iterate. This lower bound therefore shows a

quadratic separation of the convergence rates of ergodic and last iterates in smooth convex-concave
saddle point problems.
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1. Introduction

In this paper we study the following saddle-point problem:

min
x∈Rm

max
y∈Rn

f(x,y), (1)

where the function f is smooth, convex in x, and concave in y. This problem is equivalent

(Facchinei and Pang (2003)) to finding a global saddle point of the function f , i.e., a point (x∗,y∗)
such that:

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) ∀ x ∈ R
m,y ∈ R

n. (2)

The saddle point problem (1) arises in many fields. Besides its central importance in Game The-

ory, Online Learning and Convex Programming, it has recently found application in the study of
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generative adversarial networks (GANS) (e.g. Goodfellow et al. (2014); Arjovsky et al. (2017)), ad-

versarial examples (e.g. Madry et al. (2019)), robust optimization (e.g. Ben-Tal et al. (2009)), and

reinforcement learning (e.g. Du et al. (2017); Dai et al. (2018)).

The convex-concave minimax problem (1) is a special case of a monotone variational inequality

(see Section 2), which has been studied since the 1960s (Hartman and Stampacchia (1966); Browder

(1965); Lions and Stampacchia (1967); Brezis and Sibony (1968); Sibony (1970)). Several first-

order iterative algorithms to approximate the solution to a monotone variational inequality, includ-

ing the Proximal Point (PP) algorithm (Martinet (1970); Rockafellar (1976)), the extragradient (EG)

algorithm (Korpelevich (1976)) and optimistic gradient descent-ascent (OGDA) (Popov (1980)),

have been studied. It is known that the optimal rate of convergence for first-order methods for solv-

ing monotone variational inequalities (and thus (1)) is O(1/T ), and this rate is achieved by both

the EG and OGDA algorithms (Nemirovski (2004); Mokhtari et al. (2019a); Hsieh et al. (2019);

Monteiro and Svaiter (2010); Auslender and Teboulle (2005); Tseng (2008)). However, such con-

vergence guarantees are only known for the averaged (ergodic) iterates: in particular, if (xt,yt)
are the iterates generated by the EG or OGDA algorithm for the convex-concave problem (1), the

convergence rate of O(1/T ) is known for (x̄(T ), ȳ(T )) := ( 1
T

∑T
t=1 x

(t), 1
T

∑T
t=1 y

(t)).
The EG and OGDA algorithms have additionally received significant recent attention due to

their ability to improve the training dynamics in GANs (Chavdarova et al. (2019); Gidel et al. (2018a,b);

Liang and Stokes (2018); Yadav et al. (2017); Daskalakis et al. (2017)). In the saddle point formu-

lation of GANs, given by (1), the parameters x and y correspond to parameters of the generator and

the discriminator, which are usually represented by neural networks, and therefore the function f is

not convex-concave. The goal in such a case is to find a point (x∗,y∗) which satisfies a saddle-point

property such as (2) locally. However, since f is not convex-concave, few, if any, theoretical guaran-

tees are known for the averaged iterates (x̄T , ȳT ); indeed, in practice, the last iterates (x(T ),y(T ))
typically have reasonably good performance.

Several works including Korpelevich (1976); Facchinei and Pang (2003); Mertikopoulos et al.

(2018) prove that, in the convex-concave case, limT→∞(x(T ),y(T )) = (x∗,y∗) where (x(T ),y(T ))
are the iterates of EG or OGDA, but they do not establish an upper bound on the convergence rate

of the quality of the solution (x(T ),y(T )) to that of (x∗,y∗). Such a convergence rate is known for

the best iterate among (x(1),y(1)), . . . , (x(T ),y(T )) for each T ∈ N (Facchinei and Pang (2003);

Monteiro and Svaiter (2010); Mertikopoulos et al. (2018)), but not on the last iterate (x(T ),y(T )).
Finally, in the case that f is strongly convex-strongly concave, linear convergence rates on the dis-

tance between the last iterate and the global min-max point (namely, ‖(x(T ),y(T ))− (x(∗),y(∗))‖)

are known (Tseng (1995); Gidel et al. (2018a); Liang and Stokes (2018); Mokhtari et al. (2019b)),

but to the best of our knowledge, before our work there were no known convergence rates for the

last iterate of EG in the absence of strong convexity. In this paper, we prove the following tight

last-iterate convergence guarantees for the EG algorithm in the unbounded setting for different ter-

mination criteria including the primal-dual gap and Hamiltonian:

Theorem 1 (Last iterate rate for EG; informal version of Theorem 10) The EG algorithm has

a last-iterate convergence rate of O(1/
√
T ) for monotone variational inequalities satisfying first

and second order smoothness; this convergence holds when measured with respect to either the

square root of the Hamiltonian (Definition 3) or the primal-dual gap (Definition 4).
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Theorem 2 shows that the rate of Theorem 1 is tight. Moreover, it establishes a quadratic separation

between the last iterate of the extragradient algorithm (which converges at a rate of O(1/
√
T )) and

the averaged iterate (which converges at a rate of O(1/T )).

Theorem 2 (Lower bound for 1-SCLIs; informal version of Theorem 9) The O(1/
√
T ) last-iterate

upper bound of Theorem 1 is tight for all 1-stationary canonical linear iterative methods (which in-

cludes EG; see Definition 5).

1.1. Related work

Upper bounds on last-iterate convergence rates. Motivated by applications in GANs, several

recent papers have focused on proving last-iterate convergence guarantees for various min-max op-

timization algorithms. Linear convergence rates have been established for EG, OGDA and several

of their variants, in the bilinear case, where f(x,y) = x&My + b&
1 x + b&

2 y (Daskalakis et al.

(2017); Liang and Stokes (2018); Gidel et al. (2018a); Mokhtari et al. (2019b); Peng et al. (2019);

Zhang and Yu (2020)). Azizian et al. (2019) establishes a similar linear convergence rate for EG,

OGDA, and consensus optimization (Mescheder et al. (2017)) applied to general convex-concave

f in the case that a global lower bound of γ > 0 is known on the singular values of the Jacobian

of

(

∇xf(x,y)
−∇yf(x,y)

)

. Daskalakis and Panageas (2018) study the bilinear case where x,y are con-

strained to lie in the simplex and show that the iterates of the optimistic hedge algorithm converge

to a global saddle point, without providing any rates of convergence.

Abernethy et al. (2019) proved linear last-iterate convergence rates for Hamiltonian gradient

descent when f belongs to a class of ‘sufficiently bilinear’ (possibly nonconvex-nonconcave) prob-

lems. Although their result does generalize the strongly convex-strongly concave and bilinear cases,

it does not include the full generality of the convex-concave setting; moreover, as it requires com-

puting derivatives of the Hamiltonian ‖∇xf(x(t),y(t))‖2+ ‖∇yf(x(t),y(t))‖2, it is a second order

method. Hsieh et al. (2019) proved local linear convergence rates of OGDA to local saddle points

in the neighborhood of which f is strongly convex-strongly concave. Azizian et al. (2020) describe

a class of convex-concave functions for which first-order algorithms such as EG can be acceler-

ated locally (with linear rates). Several recent works (Gidel et al. (2018a,b); Bailey et al. (2019))

analyze alternating gradient descent-ascent and show that the iterates neither converge or diverge,

but rather cycle infinitely in a bounded set. Finally, there are several works (Shamir and Zhang

(2013); Jain et al. (2019); Ge et al. (2019)) in the literature on non-smooth convex minimization

that compare the convergence of the last iterate and the averaged iterate; the algorithms considered

in these papers require decaying step-sizes in order to achieve last-iterate convergence, and so are

not directly comparable to our results

Lower bounds. Using lower bounds for non-smooth convex minimization (Nemirovsky (1992))

as a black box, Nemirovski (2004) gives a lower bound of Ω(1/T ) for first-order methods for the

smooth convex-concave saddle point problem; this is achieved by, for instance, the EG algorithm

with averaged iterates. Ouyang and Xu (2019) gave a direct proof of this fact, and extended it to the

case where x,y are affinely constrained. The lower bounds of (Nemirovski (2004); Ouyang and Xu

(2019)) rely on Krylov subspace techniques, and therefore only apply in the case where T ≤ n,

where n is the dimension of the problem. Azizian et al. (2019); Ibrahim et al. (2019) amend this

issue of dimension-dependence using the canonical linear iterative (CLI) algorithm framework of

Arjevani and Shamir (2016). The lower bounds in these papers focus primarily on the smooth and

3
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strongly-convex strongly-concave case, and proceed by lower bounding the spectral radius of the

operator corresponding to a single iteration of a CLI algorithm. Independently Zhang et al. (2019)

developed similar lower bounds for the strongly-convex strongly-concave case.

A significant conceptual hurdle in establishing the tight lower bound of Ω(1/
√
T ) in Theorem

2 is that averaging the iterates of EG produces the asymptotically faster rate of O(1/T ). Thus, the

framework for our lower bound must rule out such averaging schemes; we do so by proving lower

bounds for stationary CLI (i.e., SCLI) algorithms, i.e., the iterations are time invariant. The class of

SCLI algorithms for which our lower bound applies is essentially the same as that of (Azizian et al.,

2019, Theorem 5).

Outline In Section 2 we formally define the problem considered in this paper and introduce some

notation. In Section 3, we derive a lower bound for the last iterate of 1-SCLI algorithms, of which

EG is a special case, establishing Theorem 2. In Section 4, we derive an upper bound for the

last iterate of the EG algorithm under first and second-order smoothness assumptions, establishing

Theorem 1.

2. Preliminaries

Notation. Lowercase boldface (e.g., v) denotes a vector and uppercase boldface (e.g., A) denotes

a matrix. We use ‖v‖ to denote the Euclidean norm of vector v. Throughout this paper we will

be considering a function f : X × Y → R, for convex domains X ⊆ Rnx ,Y ⊆ Rny , for some

nx, ny ∈ N. Write n = nx + ny. We will often write Z := X × Y and z := (x,y) as the

concatenation of the vectors x,y. The gradient of f with respect to x and y at (x0,y0) are denoted

by ∇xf(x0,y0) and ∇yf(x0,y0), respectively. For a matrix A ∈ Rn×n, ‖A‖σ denotes its spectral

norm, i.e., the largest singular value of A. For symmetric matrices A,B, we write A + B if B−A

is positive semidefinite (PSD). The diameter of Z ⊂ Rn is supz,z′∈Z ‖z− z′‖. For a vector z ∈ Rn

and D > 0, let B(z,D) denote the Euclidean ball centered at z with radius D. For a complex

number w ∈ C, write -(w),.(w), respectively, to denote the real and imaginary parts of w; thus

w = -(w) + i.(w).
We assume throughout this paper that the function f(x,y) is twice differentiable. To the func-

tion f : Z → R we associate an operator Ff : Z → Rn, defined by Ff (x,y) :=

(

∇xf(x,y)
−∇yf(x,y)

)

.

We usually omit the subscript when the function f is clear. It is well-known (Facchinei and Pang

(2003)) that if f is convex-concave, then F is monotone, meaning that for all z, z′ ∈ Z , we have

〈F (z) − F (z′), z− z′〉 ≥ 0. In this case, it is well-known (Facchinei and Pang (2003)) that a point

z∗ = (x∗,y∗) ∈ Z satisfies the global saddle point property (2) if and only if

〈F (z∗), z− z∗〉 ≥ 0 ∀z ∈ Z. (3)

Finding a point z∗ satisfying (3) is known as the variational inequality problem corresponding to

F . To measure the quality of a solution z = (x,y) for the saddle point problem (1) or equivalently

the variational inequality (3) given by a function f , two measures are typically used in the literature

(see, e.g., Nemirovski (2004); Monteiro and Svaiter (2010); Mokhtari et al. (2019a)). The first is

the Hamiltonian, which is equal to the squared norm of the gradient of f at (x,y).

4
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Definition 3 (Hamiltonian) For a function f : Z → R, the Hamiltonian1 of f at (x,y) ∈ Z is:

Hamf (x,y) := ‖∇xf(x,y)‖2 + ‖∇yf(x,y)‖2 = ‖Ff (z)‖2.

Note that if (x,y) is a global saddle point of (1), then Hamf (x,y) = 0.

The second quality measure of (x,y) is the primal-dual gap, which measures the amount by

which y fails to maximize f(x, ·) and by which x fails to minimize f(·,y).

Definition 4 (Primal-Dual Gap) For f : Z → R, and some convex region X ′ × Y ′ ⊆ Z , the

primal-dual gap at (x,y) ∈ Z with respect to X ′ × Y ′ is:

GapX
′×Y ′

f (x,y) = max
y′∈Y ′

f(x,y′)− min
x′∈X ′

f(x′,y). (4)

When the set X ′ × Y ′ is clear from context, we shall write Gapf (x,y).

As we work in the unconstrained setting, usually we will have Z = Rn. In such a case, we cannot

obtain meaningful guarantees on the primal-dual gap with respect to the set X ′ × Y ′ = Z = Rn,

since the gap may be infinite, if, for instance, f is bilinear. Thus, in the unconstrained setting, it

is necessary to restrict X ′ × Y ′ to be a compact set; following (Mokhtari et al. (2019a)), for our

upper bounds, we will usually consider the primal-dual gap with respect to the set X ′×Y ′ for X ′ =
B(x∗,D),Y ′ = B(y∗,D) for some D > 0. As highlighted in (Mokhtari et al. (2019a)), the iterates

(x(t),y(t)) of many convergent first-order algorithms, including EG and PP, lie in B(x∗, O(‖x(0) −
x∗‖))× B(y∗, O(‖y(0) − y∗‖)). Thus, choosing D = O(‖x∗ − x(0)‖+ ‖y∗ − y(0)‖) ensures that

the set X ′ × Y ′ contains the convex hull of all the iterates (x(t),y(t)).

3. Lower bound for first-order 1-SCLI algorithms

In this section we prove lower bounds for the convergence of a broad range of first order algorithms

including the EG algorithm for the convex-concave problem saddle point problem (1). The class of

“hard functions” we use to prove our lower bounds are simply bilinear (and thus convex-concave)

functions of the form:

f(x,y) = x&My + b&
1 x+ b&

2 y, (5)

where b1,b2,x,y ∈ Rn/2 for some even n ∈ N, and M ∈ Rn/2×n/2 is a square matrix. Then the

monotone operator F = Ff : Rn → Rn corresponding to f is of the form

F (z) = Az+ b where z =

(

x

y

)

,A =

(

0 M

−M& 0

)

,b =

(

b1

−b2

)

. (6)

Remark. We will assume that the first iterate z(0) of all 1-SCLIs considered in this paper is 0 ∈ Rn;

this assumption is without loss of generality, since we can modify f by applying a translation of

x,y in (5) to make this assumption hold for any given A.

For L,D > 0, we denote the set of L-Lipschitz operators F of the form in (6) for which M, and

therefore, A, is of full rank, and for which ‖A−1b‖ = D, by Fbil
n,L,D. The parameter D represents

1. Often there is an additional factor of 1
2 multiplying ‖Ff (z)‖

2 in the definition of the Hamiltonian (see, e.g.,

Abernethy et al. (2019)), but for simplicitly we opt to drop this factor. We do not use any physical interpretation

of the Hamiltonian in this paper.
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the distance between the initialization (namely, 0) and the optimal point z∗ , and also measures the

diameter of the balls X ,Y with respect to which the primal-dual gap is computed for our lower

bounds. As discussed in the previous section, this choice of X ,Y is motivated by the fact that for

many convergent algorithms such as EG and PP, the iterates never leave X ,Y . (We also use the

same convention for our upper bounds.) For F ∈ Fbil
n,L,D, letting f : Rn → R be such that F = Ff ,

there is a unique global min-max point for f , which is given by z∗ = −A−1b.

Now we are ready to introduce the class of optimization algorithms we consider, namely 1-

stationary canonical linear iterative algorithms:

Definition 5 (1-SCLI algorithms, Arjevani et al. (2015), Definition 1) An algorithm A produc-

ing iterates z(0), z(1), . . . ,∈ Rn with access to a monotone first order oracle F is called a 1-

stationary canonical linear iterative (1- SCLI) optimization algorithm2 over Rn if when F (z) =
Az+ b for some A ∈ Rn×n,b ∈ Rn, the iterates z(0), z(1), . . . take the form

z(t) = C0(A)z(t−1) +N(A)b, t ≥ 1, (7)

for some mappings C0,N : Rn×n → Rn×n and initial vector z(0) ∈ Rn.

When we wish to show the dependence of the iterates z(t) on the monotone mapping F of (6)

explicitly, we shall write z(t)(F ).

Notice that EG with constant step size η > 0, is a 1-SCLI, as its updates given an operator F of

the form in (6) are of the form

z(t) = z(t−1)−η(A(z(t−1)−η(Az(t−1)+b))+b) = (I−(ηA)+(ηA)2)z(t−1)−(I−ηA)ηb. (8)

In contrast to minimization, in which it is natural to measure the quality of the iterates z(t) via the

function value, there are multiple quality measures, including the Hamiltonian Hamf (·) (Definition

3) and the primal-dual gap Gapf (·) (Definition 4), for the setting of min-max optimization. We will

refer to such a quality measure as loss function, formalized as a mapping L : Rn → R≥0; note that

L in general depends on F .

Definition 6 (Iteration complexity, Arjevani et al. (2015)) Fix L,D > 0, and let A be a 1-SCLI

algorithm for the saddle point problem for f as in (5), whose description may depend on L,D.

Suppose, for each F ∈ Fbil
n,L,D, A produces iterates z(t)(F ) ∈ Rn and suppose an objective (loss)

function LF : Rn → R≥0 is given. Then the iteration complexity of A at time T and loss functions

LF , denoted ICn,L,D(A,L;T ), is defined as follows:

ICn,L,D(A,L;T ) := sup
F∈Fbil

n,L,D

{

LF (z
(T )(F ))

}

. (9)

Definition 6 is slightly different from other definitions of iteration complexity in the literature on

convex minimization (Arjevani et al. (2015); Nemirovsky (1992)), in that ICn,L,D(A,L;T ) is often

replaced with the potentially larger quantity supt≥T {ICn,L,D(A,L; t)}. However, since our goal

in this section is to prove lower bounds on the iteration complexity, our results in terms of (9) are

stronger than those with this alternative definition of iteration complexity.3

Finally, we formalize the following convergence property of 1-SCLIs:

2. The “1” in “1-SCLI” denotes that z(t) depends only on the previous iterate z(t−1).

3. This additional strength of our results rules out an algorithm which achieves small loss at iteration T for any function

F , but has large loss at some iteration T ′ > T . This additional strength to our lower bound could be useful given the

cyclical nature of the iterates of many min-max algorithms.
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Definition 7 (Consistency, Arjevani et al. (2015), Definition 3) A 1-SCLI optimization algorithm

A is consistent with respect to an invertible matrix A if for any b ∈ Rn, the iterates z(t) of A
converge to −A−1b. A is called consistent if it is consistent with respect to all (full-rank) A of the

form (6).

We shall need the following consequence of consistency.

Lemma 8 (Arjevani et al. (2015), Theorem 5) If a 1-SCLI optimization algorithm A is consistent

with respect to A, then

C0(A) = I +N(A)A. (10)

3.1. 1-SCLI lower bound

In this section we state Theorem 9, which gives a lower bound on the convergence rate of 1-SCLIs

for convex-concave functions by considering functions f of the form (5).

Theorem 9 (Iteration complexity lower bounds) Let A be a consistent 1-SCLI4 and suppose that

the inversion matrix N(·) of A is a polynomial of degree at most k− 1 with real-valued coefficients

for some k ∈ N, and let L,D > 0. Then the following iteration complexity lower bounds hold:

1. For F ∈ Fbil
n,L,D, set LHam

F (z) = ‖F (z)‖2. Then ICn,L,D(A,LHam;T ) ≥ L2D2

20Tk2 .

2. For F ∈ Fbil
n,L,D, set LGap

F (z) = supy′:‖y′−y∗‖≤D f(x,y′)− infx′:‖x′−x∗‖≤D f(x′,y). Then

ICn,L,D(A,LGap;T ) ≥ LD2

k
√
20T

.

3. For F = Ff ∈ Fbil
n,L,D, set LFunc

F (z) = |f(x,y)− f(x∗,y∗)|. Then

max
{

ICn,L,D(A,LFunc;T ), ICn,L,D(A,LFunc; 2T )
}

≥
LD2

36k
√
T
.

It will follow from Theorem 10 that the dependence on L,D, and T of the lower bounds in Theorem

9 is tight; in Proposition 15, we show additionally that the inverse linear dependence on k is also

tight, at least for T = 1.

Next we discuss the assumptions made on A in Theorem 9. First we remark that consistency is

a standard assumption made in the literature on SCLIs and is satisfied by virtually every SCLI used

in practice (see, e.g., Arjevani et al. (2015); Azizian et al. (2019); Ibrahim et al. (2019)). Moreover,

if A is not consistent, then a lower bound of Ω(1) holds on supt≥T {ICn,L,D(A,L, t)} for L ∈
{LHam,LGap} (though the constant may depend on A): to see this, let A be some full-rank matrix

and b ∈ Rn be so that the iterates z(t) of A do not converge to −A−1b. Since A is full-rank,

neither of Hamf (z(t)),Gapf (z
(t)) converge to 0.

The assumption in Theorem 9 that N(A) is a polynomial in A of degree at most k − 1 is

essentially the same as the one made in (Azizian et al., 2019, Theorem 5), which also studied 1-

SCLIs (though in the strongly convex case, deriving linear lower bounds). We remark that some

assumption on N(A) is necessary, as the choice C0(A) = 0,N(A) = −A−1 leads to z(t) =
−A−1b = z∗ for all t ≥ 1. The assumption of the polynomial dependence of N(A) on A may

be motivated by the fact that, as noted in Azizian et al. (2019), it includes many known first order

1-SCLI methods, including:

4. More generally, A may be any 1-SCLI so that (10) holds.

7
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• k-extrapolation methods, in which the single “extra” gradient step in EG is replaced by k ≥ 1
steps (see (Azizian et al., 2019, Eqn. 13));

• Cyclic Richardson iterations (Opfer and Schober (1984)), in which a single update from z(t)

to z(t+1) consists of a sequence of k gradient updates with different step-sizes η1, . . . , ηk (so

that the step sizes cycle between η1, . . . , ηk),

and combinations of the above with varying step-sizes. In particular, Theorem 9 applies to the

EG algorithm with constant step size; thus, in light of the fact that the averaged iterates z̄T of

EG have primal-dual gap bounded by O
(

D2L
T

)

((Mokhtari et al., 2019a, Theorem 3)), Theorem 9

establishes a quadratic gap (in T ) in the convergence rate between the averaged and last iterates of

EG.5 Below we provide the proof of item 1 of Theorem 9; the proofs of items 2 and 3 are deferred

to Appendix A.1.

Proof (of item 1 of Theorem 9) We claim that for all t ≥ 0,

z(t) = (C0(A)t − I) ·A−1b. (11)

To see that (11) holds, we argue by induction. The base case is trivial since z(0) = 0. For the

inductive hypothesis, note that

z(t+1) =C0(A) · (C0(A)t − I) ·A−1b+N(A)b

=C0(A) · (C0(A)t − I) ·A−1b+ (C0(A)− I) ·A−1b = (C0(A)t+1 − I) ·A−1b,

where the second equality uses consistency of A and Lemma 8.

From (11) it follows that

Hamf (z
(t)) = ‖A(C0(A)t − I)A−1b+ b‖2 = ‖AC0(A)tA−1b‖2 = ‖C0(A)tb‖2, (12)

where (12) follows from the fact that C0(A) is a polynomial in A with scalar coefficients, and

therefore A and C0(A) commute.

Next we describe the choice of A,b: given a dimension n ∈ N, Lipschitz constant L > 0 and a

diameter parameter D > 0, for some ν ∈ (0, L) (to be specified later), we set

M = νI ∈ R
n/2×n/2, b1 = b2 =







νD/
√
n

...

νD/
√
n






, A =

(

0 M

−M& 0

)

,b =

(

b1

−b2

)

. (13)

From our choice of A and the fact that ‖A−1b‖ = ν−1‖b‖ for all b ∈ Rn, it follows from (12) and

z(0) = 0 that
Hamf (z(t))

‖z(0) − z∗‖2
=

‖C0(A)tb‖2

‖A−1b‖2
=

ν2‖C0(A)tb‖2

‖b‖2
. (14)

5. Note that the upper bounds of Mokhtari et al. (2019a) for EG actually apply to the averages of zt+1/2 = zt −
ηF (zt) as opposed to the averages of zt. This does not cause a problem for the separation since our lower bound on

GapZ
f (zT ) (with Z = B(x∗, D) × B(y∗, D)) can be easily extended to a lower bound on GapZ

f (zT+1/2) as long

as η < 1/L by noting that for Ff L-smooth, ‖Ff (zT+1/2)‖ = ‖Ff (zT − ηFf (zT ))‖ ≥ (1 − ηL)‖Ff (zT )‖, and

for the functions f used in the proof of Theorem 9 (see (5)), we have GapZ
f (z) = D‖Ff (z)‖ for all z ∈ R

n.

8
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Recall the assumption that N(A) is a polynomial in A of degree k − 1 with scalar coefficients.

Moreover, by consistency, we have C0(A) = I + N(A)A, so C0(A) is a polynomial in A of

degree k with scalar coefficients. Thus we may write C0(A) = q0,0I + q0,1 ·A+ · · · + q0,k ·Ak,

where q0,0, . . . , q0,k ∈ R and q0,0 = 1. Write

q0(y) := q0,0 + q0,1y + · · ·+ q0,ky
k

for y ∈ C. It is easily verified that A has n/2 eigenvalues equal to νi and n/2 eigenvalues equal to

−νi. Therefore, by the spectral mapping theorem (see, e.g., (Lax, 2007, Theorem 4)), C0(A) has

n/2 eigenvalues equal to each of q0(νi) and q0(−νi) = q0(νi). Notice that our choice of A in (13)

is normal;6 hence C0(A) is normal as well, meaning the magnitudes of its eigenvalues are equal to

its singular values. In particular, all singular values of C0(A) are equal to |q0(νi)|. Thus, for any

vector b ∈ Rn, ‖C0(A) · b‖ = |q0(νi)| · ‖b‖. It follows that

sup
ν∈(0,L]

ν2‖C0(A)tb‖2

‖b‖2
= sup

ν∈(0,L]
ν2|q0(νi)|2t

≥ sup
ν∈(0,L]

ν2

∣

∣

∣

∣

∣

∣

∑

0≤k′≤.k/2/

(−1)k
′
q0,2k′ · ν2k

′

∣

∣

∣

∣

∣

∣

2t

(15)

= sup
y∈(0,L2]

y ·

∣

∣

∣

∣

∣

∣

∑

0≤k′≤.k/2/

(−1)k
′
q0,2k′ · yk

′

∣

∣

∣

∣

∣

∣

2t

>
L2

20tk2
, (16)

where (16) follows from Lemma 13 (see Section A.2). The desired bound in item 1 of the theorem

statement follows from (14) with t = T and the fact that ‖A−1b‖ = D.

4. Upper bound for extragradient

In this section, we discuss upper bounds for the last iterate of the Extragradient (EG) algorithm. The

updates of EG algorithm can be written as:

x(t+1) = x(t) − η∇xf(x
(t+1/2),y(t+1/2)), y(t+1) = y(t) + η∇yf(x

(t+1/2),y(t+1/2))

where

x(t+1/2) = x(t) − η∇xf(x
(t),y(t)), y(t+1/2) = y(t) + η∇yf(x

(t),y(t))

This algorithm can be succinctly written in terms of the operator F = Ff , and the concatenated

vector z = (x,y) as:

z(t+1/2) = z(t) − ηF (z(t)) z(t+1) = z(t) − ηF (z(t+1/2))

Let ∂F ∈ Rn×n denote the matrix of partial derivatives of F ; in particular, (∂F )i,j = ∂Fi(z)
∂zj

.

Our upper bound on convergence rates makes use of the following two assumptions, namely of the

Lipschitzness of F and ∂F :

6. A matrix A is normal if and only if there exists a unitary matrix U so that UAU∗ is diagonal. It is known that if A

is normal, then the magnitudes of its eigenvalues are equal to its singular values.

9
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Assumption 1 For some L > 0, the operator F is L-Lipschitz, i.e., for all z, z′ ∈ Z , we have that

‖F (z) − F (z′)‖ ≤ L‖z− z′‖.

In the case that F = Ff , the assumption that F is L-Lipschitz is simply a smoothness assumption

on f .

Assumption 2 For some Λ > 0, the operator F has a Λ-Lipschitz derivative, i.e., for all z, z′ ∈
Z , we have that ‖∂F (z) − ∂F (z′)‖σ ≤ Λ‖z − z′‖.

Assumption 2 is standard in the literature on second-order optimization, both in the minimax setting

(see, e.g., (Abernethy et al., 2019, Definition 2.5)) and in the setting of minimization (see, e.g.,

Nesterov (2006)). Even for first-order algorithms, we believe that Assumption 2 is necessary to

obtain a O(1/
√
T ) last-iterate convergence rate for convex-concave saddle point optimization, and

leave a proof (or disproof) of this fact as an open problem.

In this section our goal is to prove the following theorem.

Theorem 10 Suppose F : Rn → Rn is a monotone operator that is L-Lipschitz (Assumption

1) and has Λ-Lipschitz derivative (Assumption 2). Fix some z(0) ∈ Rn, and suppose there is

z∗ ∈ Rn so that F (z∗) = 0 and ‖z∗ − z(0)‖ ≤ D. If the extragradient algorithm with step

size η ≤ min
{

5
ΛD , 1

30L

}

is initialized at z(0), then its iterates z(T ) satisfy

‖F (z(T ))‖ ≤
2D

η
√
T
. (17)

If moreover Z = B(x∗,D) × B(y∗,D) and F (·) = Ff (·) =

(

∇xf(·)
−∇yf(·)

)

for a convex-concave

function f , then

GapZf (x
(T ),y(T )) = max

y′∈B(y∗,D)
f(x(T ),y′)− min

x′∈B(x∗,D)
f(x′,y(T )) ≤

2
√
2D2

η
√
T

(18)

for all T ∈ N.

4.1. Proximal point algorithm

Before proving Theorem 10, we briefly discuss similar convergence bounds for an “idealized” ver-

sion of EG, namely the proximal point (PP) algorithm (see Monteiro and Svaiter (2010); Mokhtari et al.

(2019a)). The updates of the PP algorithm are given by z(t+1) = z(t) − ηF (z(t+1)). As shown in

Mokhtari et al. (2019a), the ergodic iterates of PP and EG have the same rate of convergence (for

a constant step size η); moreover, Mokhtari et al. (2019b) showed that the EG algorithm can be

viewed as an approximation of the PP algorithm for bilinear functions. It is natural to wonder

whether the same rate of O(1/
√
T ) of Theorem 10 applies to the PP algorithm as well. This is

indeed the case, even without the assumption of F having Λ-Lipschitz derivatives and F being L-

Lipschitz. The proof of this (Theorem 20) is provided in Appendix C, and it relies on ‖F (z(t)‖
decreasing monotonically.

10
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4.2. Proof of Theorem 10

The proof of Theorem 10 proceeds by first using the well-known fact (Facchinei and Pang (2003);

Mertikopoulos et al. (2018); Mokhtari et al. (2019a)) that for any T ∈ N, there is some t∗ ∈
{1, 2, . . . , T} so that the t∗th iterate z(t

∗) = (x(t∗),y(t∗)) obtains the upper bound in (17), namely

that ‖F (z(t
∗))‖ ≤ 2D

η
√
T

7; this step relies only on L-Lipschitzness of F (Assumption 1). The bulk

of the proof is then to use Assumption 2 to show that ‖F (z(t))‖ does not increase much above

‖F (z(t
∗)‖ for all t∗ < t ≤ T , from which (17) follows. Finally (18) is an immediate consequence

of (17) and the fact that F is convex-concave.

Proof (of Theorem 10). Recall that the iterates of the extragradient algorithm are given by

z(t+1/2) = z(t) − ηF (z(t)), z(t+1) = z(t) − ηF (z(t+1/2)).

By Lemma 5(b) in Mokhtari et al. (2019a), we have that for any T > 0,

T−1
∑

t=0

η2‖F (z(t))‖2 =
T−1
∑

t=0

‖z(t) − z(t+1/2)‖2 ≤
‖z0 − z∗‖2

1− η2L2
≤

D2

1− η2L2
.

Thus there is some t∗ ∈ {0, 1, 2, . . . , T − 1} so that

‖F (z(t
∗))‖2 ≤

D2

Tη2(1− η2L2)
. (19)

Next we show that for each t ∈ {1, 2, . . . , T − 1}, ‖F (z(t+1)‖2 is not much greater than ‖F (z(t)‖2.

To do so we need two lemmas; the first, Lemma 11, uses Assumption 2 to write each F (z(t+1)) in

terms of F (z(t)).

Lemma 11 For all z ∈ Z , there are some matrices Az,Bz so that Az + A&
z and Bz + B&

z are

PSD and

F (z− ηF (z− ηF (z))) = F (z)− ηAzF (z) + η2AzBzF (z). (20)

and

‖Az −Bz‖σ ≤
ηΛ

2
‖F (z) − F (z− ηF (z))‖, ‖Az‖σ ≤ L, ‖Bz‖σ ≤ L. (21)

The proof of Lemma 11 is provided in Section B.2. Next, Lemma 12 will be used to upper bound

the norm of the right-hand side of (20).

Lemma 12 Suppose A,B ∈ Rn×n are matrices so that A + A& and B + B& are PSD and

‖A‖σ , ‖B‖σ ≤ 1/30. Then ‖I −A+AB‖σ ≤
√

1 + 26‖A −B‖2σ.

The proof of Lemma 12 is deferred to Section B.3.

7. This is immediate for the Proximal Point algorithm

11
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By Lemma 11 and Lemma 12 with A = ηAz(t) ,B = ηBz(t) , we have that, as long as η <
1/(30L),

‖F (z(t+1))‖2 ≤ ‖I − ηAz(t) + η2Az(t)Bz(t)‖
2
σ · ‖F (z(t))‖2

≤ (1 + 26η2‖Az(t) −Bz(t)‖
2) · ‖F (z(t))‖2

≤ (1 + 7η4Λ2 · ‖F (z(t))− F (z(t) − ηF (z(t)))‖2) · ‖F (z(t))‖2

(F is L-Lipschitz) ≤ (1 + 7η4Λ2 · η2L2‖F (z(t))‖2) · ‖F (z(t))‖2

≤ (1 + (η4Λ2/100) · ‖F (z(t))‖2) · ‖F (z(t))‖2.

Next we will prove by induction that for all t ∈ {t∗, t∗+1, . . . , T}, we have that ‖F (z(t))‖2 ≤ 2D2

η2T .

The base case is immediate by (19). To see the inductive step, note that if for all t′ ∈ {t∗, . . . , t},

‖F (z(t
′))‖2 ≤ 2D2

η2T , then

‖F (z(t+1))‖2 ≤ ‖F (z(t))‖2 ·
(

1 +
Λ2η2D2

50T

)

≤ ‖F (z(t
∗))‖2 ·

(

1 +
Λ2η2D2

50T

)t+1−t∗

(since η < 1/(30L)) ≤
D2

η2T (1− 1/900)
·
(

1 +
Λ2η2D2

50T

)T

≤
2D2

η2T
,

where the last inequality holds as long as Λ2η2D2/50 ≤ 1
2 , or equivalently, η ≤ 5

ΛD . In particular,

we get that ‖F (z(T ))‖ ≤ 2D
η
√
T
. If F (x,y) =

(

∇xf(x,y)
−∇yf(x,y)

)

, for some convex-concave function

f , then, writing X = B(x∗,D),Y = B(y∗,D), we have

max
y′∈Y

f(x(T ),y′)− min
x′∈X

f(x′,y(T ))

≤ max
y′∈Y

〈∇yf(x
(T ),y(T )),y′ − y(T )〉+max

x′∈X
〈∇xf(x

(T ),y(T )),x(T ) − x′〉

= max
z′∈Z

〈F (z(T )), z(T ) − z′〉 ≤ ‖F (z(T ))‖ ·D
√
2 ≤

2
√
2D2

η
√
T

.

5. Conclusion and Future Work

In this paper we establish a O(1/
√
T ) upper bound on the primal-dual gap for the T th iterate of

EG, and show that this is tight among 1-SCLI algorithms. This is slower than the primal-dual

gap of O(1/T ) for the average of the first T iterates of EG (Nemirovski (2004)). An interest-

ing direction for future work is to determine if there is a provable benefit to averaging in the

nonconvex-nonconcave case. Some experimental work has suggested that such a benefit to av-

eraging exists (Yazıcı et al. (2019)); moreover, averaging is effective even for large-scale GANs

(Brock et al. (2019)).

Another direction for future work is to extend the lower bound of Theorem 9 (or prove a stronger

upper bound) for algorithms with decaying step-sizes, which correspond to non-stationary CLIs.

12
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Such a question is only nontrivial for the case of 1-CLIs, as the averaged iterates of extragradient

can be written as the iterates of a particular 2-CLI8, and the O(DL2/T ) rate of convergence of

the averaged iterates of extragradient is known to be optimal (Nemirovski (2004)). Towards this

question, we show in Section D.2 that, in contrast to the case for non-smooth convex minimization

(Jain et al. (2019); Shamir and Zhang (2013)), any choice of decaying step-size for the EG algo-

rithm cannot improve the Ω(1/
√
T ) lower bound from Theorem 9.
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Appendix A. Proofs for Theorem 9

A.1. Proof of items 2 and 3 of Theorem 9

Proof (of items 2 and 3 of Theorem 9) We begin with item 2, namely the lower bound on the primal-

dual gap. The choice of M,A,b1,b2 (which depend on ν ∈ (0, L]) is exactly the same as for item

1, and is given in (13). Write Z := B(x∗,D) × B(y∗,D). Next we compute GapZf (z
(t)) in a

similar manner to the Hamiltonian in (12). The components of the primal-dual gap GapZf (x,y) for

a given point (x,y) ∈ Rn are given as follows:

max
y′∈Y

f(x,y′) = b&
1 x+ max

y′:‖y′−y∗‖≤D
〈y′,M&x+ b2〉

= D‖M&x+ b2‖+ 〈y∗,M&x+ b2〉+ b&
1 x

= D‖M&x+ b2‖+ 〈−M−1b1,M
&x+ b2〉+ 〈b1,x〉

= D‖M&x+ b2‖ − 〈M−1b1,b2〉.
− min

x′∈X
f(x′,y) = −b&

2 y − min
x′:‖x′−x∗‖≤D

〈x′,My + b1〉

= D‖My + b1‖ − 〈x∗,My + b1〉 − b&
2 y

= D‖My + b1‖ − 〈−(M&)−1b2,My + b1〉 − 〈b2,y〉
= D‖My + b1‖+ 〈M−1b1,b2〉.

Thus

GapZf (x,y) = max
y′∈Y

f(x,y′)− min
x′∈X

f(x′,y) = D‖M&x+b2‖+D‖My+b1‖ = D‖Az+b‖,

(22)

and so

GapZf (x
(t),y(t)) = D‖C0(A)tb‖. (23)

From (23) we have

GapZf (x
(t),y(t))

‖z(0) − z∗‖2
=

D‖C0(A)tb‖
‖A−1b‖2

=
ν‖C0(A)tb‖

‖b‖
. (24)

The desired bound in item 2 of the theorem statement follows from (24), (16), and the fact that

‖A−1b‖ = D.

Next we turn to convergence in function value (item 3 of the theorem). First note that

f(x(t),y(t))− f(x∗,y∗)

=(x(t))&My(t) + 〈x(t),b1〉+ 〈y(t),b2〉 − (x∗)&My∗ − 〈x∗,b1〉 − 〈y∗,b2〉

=〈x(t) − x∗,M(y(t) − y∗)〉 − 2〈x∗,My∗〉+ 〈x∗,My∗〉+ 〈y∗,M&x∗〉

=〈x(t) − x∗,M(y(t) − y∗)〉

=ν ·
n/2
∑

i=1

(x(t)
i − x∗

i ) · (y
(t)
i − y∗

i ), (25)

where we have used that y∗ = −M−1b1,x∗ = −(M&)−1b2.
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Note that the diagonalization of A can be written as

A = U·diag(νi, · · · , νi,−νi, · · ·−νi)·U−1, U =
1√
2
·





















1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0

...
...

i 0 · · · 0 −i 0 · · · 0
0 i · · · 0 0 −i · · · 0

...
...





















.

Since U is unitary, it follows from (11) that

z(t) − z∗

=C0(A)tA−1b

=ν−1U · diag(q0(νi), · · · , q0(νi), q0(−νi), · · · , q0(−νi))t · diag(−i, · · · ,−i, i, · · · , i) ·U−1b

=
D√
2n

·U · (q0(νi)t(1− i), . . . , q0(νi)
t(1− i), q0(−νi)t(1 + i), . . . , q0(−νi)t(1 + i))&

=
D√
n
· (-(q0(νi)t(1− i)), . . . ,-(q0(νi)t(1− i)),−.(q0(νi)t(1− i)), . . . ,−.(q0(νi)t(1− i))).

Now let us write q0(νi) = |q0(νi)| · eiθ(ν), where θ(ν) ∈ [0, 2π). It folllows from (25) that

f(x(t),y(t))− f(x∗,y∗)

=ν

n/2
∑

i=1

(x(t)
i − x∗

i ) · (y
(t)
i − y∗

i )

=νD2 ·
1

2
· |q0(νi)|2t(cos(tθ(ν)) + sin(tθ(ν))) · (cos(tθ(ν))− sin(tθ(ν)))

=νD2 ·
1

2
· |q0(νi)|2t · cos(2tθ(ν))

=νD2 ·
1

2
· -(q0(νi)2t). (26)

Now fix some T . It follows in a manner identical to (16), using Lemma 13, that there is some ν∗ with

ν2∗ ∈ [L2/(40Tk2), L2] so that ν2∗ ·|q0(ν∗i)|8T ≥ L2

80Tk2 , which implies ν∗·|q0(ν∗i)|4T ≥ L√
80Tk

. We

claim that also ν∗ ·|q0(ν∗i)|2T ≥ L√
80Tk

. If |q0(ν∗i)| ≥ 1, this is immediate from ν∗ ≥ L/(
√
40Tk);

otherwise, this follows from |q0(ν∗i)|2T ≥ |q0(ν∗i)|4T . To complete the proof we consider two

cases:

Case 1. If |-(q0(ν∗i)2T )| ≥ 1
2 ·|q0(ν∗i)

2T |, then by (26) |f(x(T ),y(T ))−f(x∗,y∗)| ≥ LD2
√
1280T k

(where f is so that ν in (13) is set to ν∗), and we get that ICn,L,D(A,LFunc;T ) ≥ LD2
√
1280Tk

≥
LD2

36k
√
T

.

Case 2. In the other case that |-(q0(ν∗i)2T )| ≤ 1
2 ·|q0(ν∗i)

2T |, we have 2T θ(ν∗) ∈ [π/3, 2π/3]∪
[−2π/3,−π/3]. Hence 4T θ(ν∗) ∈ [2π/3, 4π/3], and so |-(q0(ν∗i)4T )| ≥ 1

2 · |q0(ν∗i)4T |. By (26)

and the fact that ν∗·|q0(νi)|4T ≥ L√
80Tk

, it follows that in this case we have ICn,L,D(A,LFunc; 2T ) ≥
LD2

√
1280Tk

.
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A.2. Supplementary lemmas for Theorem 9

Lemma 13 below is similar to the bounds derived in (Nemirovsky, 1992, Section 2.3.B), but it

achieves a better dependence on t; in particular, if the bounds in (Nemirovsky, 1992, Section 2.3.B)

are used in a black-box manner, one would instead get a lower bound of Ω(L/t2k2) in (27).

Lemma 13 Fix some k, t ∈ N, L > 0. Let r(y) ∈ R[y] be a polynomial with real-valued coeffi-

cients of degree at most k, such that r(0) = 1. Then

sup
y∈(0,L]

y · |r(y)|t ≥ sup
y∈[L/(20tk2),L]

y · |r(y)|t >
L

40tk2
. (27)

Proof Set µ := L
20tk2 . Then

√

L/µ− 1 =
√
20tk2 − 1 ≥

√
12t · k. By Lemma 14 we have that

sup
y∈[µ,L]

y · |r(y)|t ≥
L

20tk2
·

(

1−
6k2

(
√

L/µ− 1)2

)t

≥
L

20tk2
· (1− 1/(2t))t ≥

L

40tk2
.

Lemma 14 Fix some k ∈ N and L > µ > 0 such that k ≤
√

L/µ − 1. Let r(y) ∈ R[y] be a

polynomial with real-valued coefficients of degree at most k, such that r(0) = 1. Then

sup
y∈[µ,L]

|r(y)| > 1−
6k2

(
√

L/µ− 1)2
. (28)

Lemma 14 is very similar to the combination of Lemmas 5 and 12 in Azizian et al. (2019), but has

a superior dependence on k. In particular, we could use (Azizian et al., 2019, Lemmas 5 & 12) to

conclude that a lower bound of 1 − k3 · 4µ
Lπ holds in (28), which is smaller than 1− 6k2

(
√

L/µ−1)2
for

sufficiently large k (e.g., k > 10). We also remark that the proof of Lemma 14 is much simpler than

that of (Azizian et al., 2019, Lemmas 5 & 12), though the proofs use similar techniques.

Proof (of Lemma 14). Let Tk(y) denote the Chebyshev polynomial of the first kind of degree k; it

is characterised by the property that:

Tk

(

cos

(

jπ

k

))

= (−1)j , j = 0, 1, . . . , k, (29)

which turns out to be equivalent to the property that

Tk

(

1

2
·
(

z +
1

z

))

=
1

2
·
(

zk +
1

zk

)

, ∀z ∈ C. (30)

It follows immediately from (30), that for k odd, Tk is an odd function, and for k even, Tk is an even

function.

Let q(y) =
Tk

(

2y−(µ+L)
L−µ

)

Tk

(

L+µ
L−µ

) . Then q(0) = 1. Using (29) and the fact that r(0) = q(0) = 1, it was

shown in (Arjevani and Shamir, 2016, Lemma 2) that

sup
y∈[µ,L]

|r(y)| ≥ sup
y∈[µ,L]

|q(y)|.
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Let κ = L/µ. From (29) we have that supy∈[µ,L] |q(y)| ≥ 1

Tk

(

L+µ
L−µ

) = 1
Tk(κ+1

κ−1)
(in fact, equality

holds). At this we depart from the proof of (Arjevani and Shamir, 2016, Lemma 2), noting simply

that a tighter lower bound on 1
Tk(κ+1

κ−1)
than the one shown in (Arjevani and Shamir, 2016, Lemma

2) holds when k2 3 κ. In particular, since
√
κ+1√
κ−1

+
√
κ−1√
κ+1

= 2 · κ+1
κ−1 , (30) gives that

Tk

(

κ+ 1

κ− 1

)

=
1

2
·

(

(√
κ+ 1√
κ− 1

)k

+

(√
κ− 1√
κ+ 1

)k
)

<
1

2
·
((

1 +
2k√
κ− 1

+
(2k)2

(
√
κ− 1)2

)

+

(

1−
2k√
κ+ 1

+
(2k)2

(
√
κ+ 1)2

))

(31)

≤
1

2
·
(

2 +
4k

κ− 1
+

8k2

(
√
κ− 1)2

)

≤1 +
2k + 4k2

(
√
κ− 1)2

. (32)

Above (31) follows from the fact k ≤
√
κ− 1 and that for −2 ≤ yk ≤ 2, we have that

(1 + y)k ≤ exp(yk) ≤ 1 + yk + 2y2k2.

From (32) it follows that

1

Tk

(

κ+1
κ−1

) > 1−
2k + 4k2

(
√
κ− 1)2

≥ 1−
6k2

(
√
κ− 1)2

.

A.3. Tightness of dependence on the degree k

The below proposition establishes that the inverse linear dependence on k in Theorem 9 is tight:

Proposition 15 Then there is a consistent 1-SCLI A whose inversion matrix N(·) is a polynomial

of degree at most k − 1 so that

ICn,L,D(A,LHam; 1) ≤ O

(

L2D2

k2

)

, max
{

ICn,L,D(A,LGap; 1), ICn,L,D(A,LFunc; 1)
}

≤ O

(

LD2

k

)

.

(33)

Iteration complexities are defined with respect to Fbil
n,L,D as in Definition 6.

Remark. We note that the upper bounds in Proposition 15 hold more generally with respect to any

monotone linear operator F (z) = Az+b. We stick with the class Fbil
n,L,D of operators correspond-

ing to a bilinear function f (as in Definition 6) to simplify notation.

Proof (of Proposition 15) Consider a monotone operator F = Ff ∈ Fbil
n,L,D of the form F (z) =

Az + b. For t ≥ 0, let w(t) be the iterates obtained by running extragradient on the monotone

operator F starting at w(0) = 0 and with step size η = 1/(2L). Letting

C0(A) := I − ηA+ (ηA)2, N(A) := −η(I − ηA)b,
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by (8), we can write

w(t) = (C0(A)t +C0(A)t−1 + · · ·+C0(A) + I) ·N(A)b.

For any T > 0, denote the averaged iterates up to time T by w̄(T ) := w(0)+···+w(T )

T+1 . Also write

w̄(T ) = (x̂(T ), ŷ(T )). By (Mokhtari et al., 2019a, Theorem 3), we have, with X := B(x∗,D),Y :=
B(y∗,D),

LGap
F (w̄(T )) = max

y∈Y
f(x̂(T ),y)−min

x∈X
f(x, ŷ(T )) ≤ O

(

D2L

T

)

.

It follows immediately from the fact that f is convex-concave that also LFunc(w̄(T )) ≤ O
(

D2L
T

)

.

By (22) it follows that LHam
F (w̄(T )) = ‖Aw̄(T ) + b‖2 ≤ O

(

D2L2

T 2

)

.

Next fix T = 4k−1
2 5, and define the polynomial

N′(A) :=
(C0(A)T + 2C0(A)T−1 + · · · + (T + 1)I) ·N(A)

T + 1
,

so that N′(A) is a polynomial in A with real-valued coefficients of degree at most 2T +1 ≤ k− 1.

Also let C′
0(A) := I + N′(A) · A. It is immediate from the definition of N′(·) that w(T ) =

N′(A) · b, and so w(T ) is the first iterate (namely, z(1), as in (7)) in the consistent 1-SCLI defined

by C′
0(·),N′(·).

Appendix B. Proofs of Lemmas 11 and 12

B.1. Preliminary lemmas

Before proving Lemmas 11 and 12 we state a few simple lemmas.

Lemma 16 (Nesterov (2006)) If Z ⊂ Rn and F : Z → Rn is monotone, then for any z,w ∈ Rn,

z&(∂F (w))z ≥ 0. Equivalently, ∂F (w) + ∂F (w)& is PSD.

Lemma 17 Let X,Y ∈ Rn×n be any square matrices. Then

XX& + 2YY& + 2‖X−Y‖2σ · I. (34)

Proof (of Lemma 17) Note that for any real numbers x, y we have that x2 = (y + (x − y))2 ≤
2y2 + 2(x− y)2. It follows that for any vector v ∈ Rn,

‖X&v‖2 ≤ 2‖Y&v‖2 + 2‖X&v−Y&v‖2

≤ 2‖Y&v‖2 + 2‖X& −Y&‖2σ‖v‖2,

which establishes (34).

Lemma 18 Let S,R ∈ Rn×n be (symmetric) PSD matrices. Then

SR+RS + 4S2 + 4‖S−R‖2σ · I. (35)
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Proof (of Lemma 18) Note that for any real numbers r, s we have that rs ≤ 2s2 + 2(r − s)2. It

follows that for any v ∈ Rn,

2〈Rv,Sv〉 ≤ 4‖Sv‖2 + 4‖Rv − Sv‖2 ≤ 4‖Sv‖2 + 4‖S−R‖2σ‖v‖2.

B.2. Proof of Lemma 11

Proof (of Lemma 11). Since F is continuously differentiable, by the fundamental theorem of cal-

culus, for all z,

F (z− ηF (z)) = F (z)−
∫ 1

0
∂F (z− (1− α)ηF (z)) · ηF (z)dα,

so if we set

Bz =

∫ 1

0
∂F (z− (1− α)ηF (z))dα,

then we have F (z−ηF (z)) = F (z)−ηBzF (z). Again using the fundamental theorem of calculus,

F (z− ηF (z − ηF (z))) = F (z) − η

∫ 1

0
∂F (z− (1− α)ηF (z − ηF (z)))F (z − ηF (z))dα.

Then if we set

Az =

∫ 1

0
∂F (z− (1− α)ηF (z − ηF (z)))dα,

then

F (z− ηF (z − ηF (z))) =F (z)− ηAzF (z− ηF (z))

=F (z)− ηAz(F (z) − ηBzF (z))

=F (z)− ηAzF (z) + η2AzBzF (z).

Note that Az,Bz have spectral norms at most L and Az +A&
z , Bz +B&

z are PSD since the same

is true of the matrices ∂F (z − (1 − α)ηF (z − ηF (z))) and ∂F (z − (1 − α)ηF (z)) (here we are

using Lemma 16). Finally, since F has a Λ-smooth Jacobian, we have that

‖Az −Bz‖σ ≤
∫ 1

0
‖∂F (z − (1− α)ηF (z)) − F (z− (1− α)ηF (z − ηF (z)))‖σdα

≤
∫ 1

0
(1− α)ηΛ‖F (z) − F (z− ηF (z))‖dα

=
ηΛ

2
‖F (z) − F (z− ηF (z))‖.
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B.3. Proof of Lemma 12

Proof (of Lemma 12). Set L0 = max{‖A‖σ , ‖B‖σ}. We wish to show that

(I −A+AB)(I −A+AB)& + I · (1 + 26‖A −B‖2σ),

or equivalently that

(A+A&)− (AB+B&A&)−AA& +(ABA& +AB&A&)−ABB&A& 6 −26‖A−B‖2σI.

Notice that ABA&+AB&A& 6 0 since for any vector v ∈ Rn, we have v&A(B+B&)A&v ≥ 0
as B+B& 6 0. Moreover, since BB& + L2

0 · I , we have that for any v ∈ Rn, v&ABB&A&v ≤
L2
0 · v&AA&v, and so ABB&A& + L2

0 ·AA&. Thus it suffices to show

(A+A&)− (AB+B&A&)− (1 + L2
0) ·AA& 6 −26‖A−B‖2σI. (36)

Next write M := (A−A&)/2,S := (A+A&)/2,N := (B−B&)/2,R := (B+B&)/2. Then

R,S are positive semi-definite and M,N are anti-symmetric (i.e., M& = −M,N& = −N). Also

note that ‖R− S‖σ ≤ ‖A−B‖σ and ‖M−N‖σ ≤ ‖A−B‖σ. Then we have:

AA& = (M+ S)(M& + S&) = MM& +MS+ SM& + SS

AB = (M+ S)(N+R) = MN+MR+ SN+ SR

= −MN& +MR− SN& + SR

B&A& = (N& +R&)(M& + S&) = N&M& +N&S+RM& +RS

= −NM& −NS+RM& +RS.

Next, note that for any vector v ∈ Rn and any real number ε > 0, we have

〈v, (MS + SM&)v〉 = 2〈Sv,M&v〉

= 2
n
∑

j=1

(Sv)j · (M&v)j

(Young’s inequality) ≤ 2
n
∑

j=1

ε · (M&v)2j
2

+
(Sv)2j
2ε

= ε · ‖M&v‖22 +
‖Sv‖22

ε
.

Thus MS+SM& + ε·MM&+S2

ε . Replacing M with −N gives that for all ε > 0, −NS−SN& +
ε ·NN& + S2

ε , and replacing S with R gives that for all ε > 0, MR+RM& + ε ·MM& + R2

ε .

Hence

(1 + L2
0) ·AA& +AB+B&A&

+ (1 + L2
0) ·
(

(1 + ε)MM& + (1 +
1

ε
)S2

)

−MN& −NM& + SR+RS

+ ε ·NN& +
S2

ε
+ ε ·MM& +

R2

ε
.
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By Lemma 17 with X = R,Y = S and Lemma 18, we have that

SR+RS+ ε ·NN& +
S2

ε
+ ε ·MM& +

R2

ε

+ ε · (NN& +MM&) +

(

4 +
1

ε
+

2

ε

)

· S2 +

(

4 +
2

ε

)

· ‖R− S‖2σ · I,

so

(1 + L2
0) ·AA& +AB+B&A&

+ε ·NN& + ((1 + L2
0)(1 + ε) + ε)MM& −NM& −MN&

+

(

(1 + L2
0)

(

1 +
1

ε

)

+ 4 +
3

ε

)

S2 +

(

4 +
2

ε

)

· ‖A−B‖2σ · I.

(37)

Next, note that as long as 5ε+ 2L2
0 + 2εL2

0 ≤ 1, we have that

ε ·NN& + ((1 + L2
0)(1 + ε) + ε)MM& −NM& −MN&

+(∗1)(ε+ 2 · (2ε+ L2
0 + εL2

0)) ·NN& +MM& −NM& −MN&

+ 2 · (2ε+ L2
0 + εL2

0) · ‖M−N‖2σI
+NN& +MM& −NM& −MN& + (1− ε)‖A−B‖2σI
=(N−M)(N& −M&) + (1− ε)‖A−B‖2σI
+‖N−M‖2σI + (1− ε)‖A−B‖2σI
+(2− ε)‖A−B‖2σI. (38)

where (∗1) follows from Lemma 17 with X = M,Y = N. Moreover, as long as

L0
(

(1 + L2
0)(1 + (1/ε)) + 4 + (3/ε)

)

≤ 2,

since ‖S‖σ ≤ ‖A‖σ ≤ L0, we have that

(

(1 + L2
0)

(

1 +
1

ε

)

+ 4 +
3

ε

)

S2 + 2S = A+A&. (39)

Combining (37), (38), and (39) gives that

(1 + L2
0) ·AA& +AB+B&A& +

(

6 +
2

ε

)

‖A−B‖2σI +A+A&,

which is equivalent to (36) as long as ε = 1/10.

Finally, note that as long as L0 ≤ 1/30, the choice ε = 1/10 satisfies 5ε+2L2
0 +2εL2

0 ≤ 1 and

L0((1 + L2
0)(1 + 1/ε) + 4 + 3/ε) ≤ 2, completing the proof.
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Appendix C. Proof of Last Iterate convergence of Proximal Point

We first prove the following lemma which shows that the Hamiltonian decreases each iteration of

the proximal point algorithm:

Lemma 19 Suppose that F : RD → RD is a monotone operator. Then

‖F (x)‖2 ≤ ‖F (x+ ηF (x))‖2.

Proof By monotonicity of F we have that, for η > 0, 〈F (x), F (x + ηF (x)) − F (x)〉 ≥ 0. Now

note that

‖F (x + ηF (x))‖2 − ‖F (x)‖2

= 2〈F (x), F (x + ηF (x)) − F (x)〉 + ‖F (x+ ηF (x)) − F (x)‖2

≥ 0.

Theorem 20 gives an analogue of Theorem 10 for the PP algorithm. Given Lemma 19, its proof

is essentially immediate given prior results in the literature (see, e.g., Mokhtari et al. (2019a);

Monteiro and Svaiter (2010)), but we reproduce the entire proof for completeness.

Theorem 20 Suppose F : Rn → Rn is a monotone operator. Fix some z(0) ∈ Rn, and suppose

there is z∗ ∈ Rn so that F (z∗) = 0 and ‖z∗ − z(0)‖ ≤ D. If the proximal point algorithm with any

step size η > 0 is initialized at z(0), then its iterates z(T ) satisfy

‖F (z(t))‖ ≤
D

η
√
T
.

If moreover Z = B(x∗,D) × B(y∗,D) and F (x,y) =

(

∇xf(x,y)
−∇yf(x,y)

)

for a convex-concave

function f , then it follows that

GapZf (x
(T ),y(T )) = max

y′∈B(y∗,D)
f(x(T ),y′)− min

x′∈B(x∗,D)
f(x′,y(T )) ≤

√
2D2

η
√
T

.

(Here z(T ) = (x(T ),y(T )).)

Proof Recall that the iterates of the proximal point algorithm are defined by

z(t+1) = z(t) − ηF (z(t+1)).

It is easy to see that the following equality holds at all iterations of the proximal point algorithm:

for all z ∈ RD,

〈F (z(t+1)), z(t+1) − z〉 =
1

2η

(

‖z(t) − z‖2 − ‖z(t+1) − z‖2 − ‖z(t) − z(t+1)‖2
)

.

Setting z = z∗, so that 〈F (z′), z′ − z∗〉 ≥ 0 for all z′, it follows that for any T > 0,

T−1
∑

t=0

η

2
‖F (z(t+1))‖2 ≤

T−1
∑

t=0

1

2η

(

‖z(t) − z‖2 − ‖z(t+1) − z‖2
)

≤
1

2η
‖z0 − z‖2 ≤

1

2η
D2.
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(The last inequality follows since z, z∗ ∈ Z , and the diameter of Z is at most D.) Thus, there exists

some t∗ ∈ {1, 2, . . . , T} so that

‖F (z(t
∗))‖2 ≤

D2

η2T
. (40)

Next, Lemma 19 with x = z(t+1) gives that for each t ≥ 0,

‖F (z(t+1))‖2 ≤ ‖F (z(t+1) + ηz(t+1))‖2 ≤ ‖F (z(t))‖2.

Thus

‖F (z(T ))‖ ≤
D

η
√
T
.

If Z = X × Y and F (x,y) =

(

∇xf(x,y)
−∇yf(x,y)

)

, for some convex-concave function f , then

max
y′∈Y

f(x(T ),y′)− min
x′∈X

f(x′,y(T ))

= max
y′∈Y

f(x(T ),y′)− f(x(T ),y(T ))− min
x′∈X

(f(x′,y(T ))− f(x(T ),y(T )))

≤ max
y′∈Y

〈∇yf(x
(T ),y(T )),y′ − y(T )〉+ max

x′∈X
〈∇xf(x

(T ),y(T )),x(T ) − x′〉

= max
z′∈Z

〈F (z(T )), z(T ) − z′〉

≤ ‖F (z(T ))‖ ·D
√
2

≤
√
2D2

η
√
T

.

Appendix D. CLIs with time-varying coefficients

D.1. Averaged EG iterates are a 2-CLI with time-varying coefficients

In this section we show that the averaged iterates of extra-gradient can be written as the iterates of a

particular 2-CLI9 with time-varying coefficients. Let z(t), t ≥ 0 be the iterates of extragradient and

v(t) :=
∑t

t′=0 z
(t)

t+1 . Then z(t) = (t+ 1)v(t) − tv(t−1), and so

(t+ 2)v(t+1) = (t+ 1)v(t) + z(t+1)

= (t+ 1) · v(t) + z(t) − ηF (z(t) − ηF (z(t)))

= 2(t+ 1)v(t) − tv(t−1) − ηF ((t+ 1)v(t) − tv(t−1) − ηF ((t+ 1)v(t) − tv(t−1))).

Writing F (z) = Az+ b (i.e., restricting to the setting in which CLIs are defined) gives

v(t+1) =
(

2I − ηA+ (ηA)2
)

·
t+ 1

t+ 2
v(t) −

(

I − ηA+ (ηA)2
) t

t+ 2
v(t−1) + η(−I + ηA)b,

which is a 2-CLI.

9. See (Arjevani and Shamir, 2016, Definition 2) for a definition of 2-CLIs.

26



LAST ITERATE IS SLOWER THAN AVERAGED ITERATE

D.2. Lower bound for last iterate of EG with time-varying coefficients

In this section we consider the iterates of the EG algorithm with time-varying coefficients, defined

as follows:

z(t+1/2) = z(t) − ηtF (z(t)) z(t+1) = z(t) − ηtF (z(t+1/2)), (41)

where ηt > 0 is a sequence of time-varying coefficients.

As in Theorem 9, for given n,L,D and F = Ff ∈ Fbil
n,L,D with Nash equilibrium z∗ = (x∗,y∗),

set Z = B(x∗,D) × B(y∗,D), so that for z = (x,y), GapZf (z) = supy′:‖y′−y∗‖≤D f(x,y′) −
infx′:‖x′−x∗‖≤D f(x′,y).

Proposition 21 Fix any n ∈ N and L,D > 0. For t ∈ N, let ηt be a sequence with ηt ∈ (0, 1/L)
for each t. Let z(t) = (x(t),y(t)) denote the iterates of EG with step-sizes ηt, as in (41). Then there

is some F = Ff ∈ Fbil
n,L,D such that GapZf (z

(T )) ≥ LD2

4
√
T

.

Proof The proof closely parallels that of Theorem 9. In particular, we choose A,b as in (13), with

ν ∈ (0, L) to be specified below. Set C0,t(A) := I − ηtA+ (ηtA)2. Then the update (41) can be

written as

z(t) = C0,t(A) · z(t−1) − (I − ηtA) · ηtb,

We claim that for t ≥ 0,

Az(t) + b =
t−1
∏

t′=0

C0,t′(A) · b. (42)

To see (42), we argue by induction, noting that the base case is immediate since z(0) = 0, and for

the inductive step:

Az(t+1) + b = AC0,t(A)z(t−1) −A(I − ηtA)ηtb+ b

= AC0,t(A)z(t−1) + (C0,t(A)− I)b+ b

= C0,t(A) · (Az(t−1) + b).

Thus, by (24), we have

GapZf (x
(t),y(t)) =

D2ν
∥

∥

∥

∏t−1
t′=0C0,t′(A) · b

∥

∥

∥

‖b‖
. (43)

Let us choose ν = L/
√
T . It is straightforward to check that the singular values of

∏t−1
t′=0C0,t′(A),

which are equal to the magnitudes of its eigenvalues, are all equal to
∣

∣

∣

∣

∣

t−1
∏

t′=0

(1− ηtνi+ (ηtνi)
2)

∣

∣

∣

∣

∣

=
t−1
∏

t′=0

∣

∣(1− η2t ν
2) + ηtνi

∣

∣

≥
t−1
∏

t′=0

(1− η2t ν
2) ≥ (1− 1/T )T ≥ 1/4

for T ≥ 2. For any nonzero choice of b, (43) thus gives that GapZf (z
(t)) ≥ D2L

4
√
T

.
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